Interconnecting SCA
Applications

Presented by
Francois Levesque,
Steve Bernier

Advanced Radio Systems

Communication Research Centre Canada
November 7, 2007




 [ntroduction

« Application reusability
« Aggregate Application concept
* Implementation options

« SCA support for aggregate applications

“Conclusion




Introduction

e The context

The SCA is a component-based development (CBD)
framework for embedded systems

Reusability of components is an important aspect of CBD
Components can have different level of granularities
* Fine (e.g. a filter component)

* Medium (e.g. a demodulator component)

« Large (e.g. an FM receiver component => can also be an
application made of smaller components)

An SCA application is made of components interconnected
through ports




Introduction

 The problem

— The SCA doesn’t specify how Applications can be
Interconnected

 What identification mechanism can be used?

— Radio networking limitations
« Avoid application reusability
« Increase storage capacity requirements

— Proprietary solutions lead to application portability issue




Application Reusability

 Reusability is the corner stone of CBD

 An SCA application is defined as an assembly of
components (i.e. Resources)
— SCA application := Resource”
— Resources can be reused in multiple applications

« Applications are the only way to group Resources
to implement a specific functionality

— Incapability to define sub-assemblies lead to larger
components

— Prevent developer to reuse existing applications to create
other applications




Application Reusability

« Current alternative: create larger applications
composed of the amalgamation of Resources

from smaller applications
— Reuse of existing Resources only
— Assembly knowledge of the smaller applications must be
properly duplicated
» Redefine connections, property overriding, uses device

relationships, etc.

» Assembly controller (AC) of the larger application must contains
the same business logic than the ACs of the smaller

applications




Application Reusability

« AM-FM cross-banding application example

LogPort

USRP_ DeviceContral <<AssemblyController>> | FMMaoduiatorResouree Cantral

SignaiDetectorResource Contro! It E LU LU~ De mocistorResource Control
AMDemaduiatarfesoure e Cantral FMRecelellajceFiterResaree Contral
AMReceivelialceFifterResaurce Cantral SquelchDetectarfesource bontral

FMTransmitlioiceFifterResanrce Caontral SquelchFiterResaurce Gantral

SquelichinfectorResadree Control AMTransmitlioiceFliterResowrce Contral

AMMaoduiatorResource Cantral

B SignalDetector =N Datatr B AmDemodulator AMReceiveVoiceFitter M (EEER Y A M Rec e | VvVer

Datain

LogPost LooFort LooPort

Dataln Dataln

FMModulator 2N m Squelchinjector 3 m FMTransmitVoiceFilter H g

FM Transmitter

DataCut

DataOut_Cgo tain_ Chi
ml L
VSR BBy :
— — .
L1
& Thaiain Ch DFa0ut Chi

Datain Datain

m FMReceiveVoiceFilter | W SquelchDetector 7 B  sguelchFilter M

DataCut
LogPot LogPort LagPort iogPort

Dataln

AMModulator A AMTransmitVoiceFilter 3

DataOut DataOut

LogPort LagFan

AM Transmitter FM Receiver [rr=r=re=ees




Application Reusability

. Add support of
to the SCA

— Enable reuse of existing applications

<<jfnterface==
AggregateApplication

|

“zinteface==
Application




Application Reusability

AM-FM cross-banding aggregate application example

AM Receiver Application

USRRP_Dewice Control LogPaort

DataCut_Chi <<AssemblyController>>
EEEET S RS L AM_Receiver_AssemblyController EyigeGce sy s

Dataln_ CHOL] USRP Device
Datain_Ch1[]

DataOut_Chi

AMDemaduiatorfesourc e Control AMVioiceFitterR esowrce Controf
DataOut

Datafn Datain

Datail
SignalDetector i "" AMVoiceFiter 3 {] Resampler k=]

¥ AMDemodulator M

LogPort LogPart LagPort LagPort

FM Transmitter Application

iogFart

Datain_Chid Data Out Chid

R S el ] USRP Device Cantral DataOut Chi
FM_Transmitter_AssemblyController =

Ll USRP_Device
(]

Datain_Ch1

Ml olce, ontrol torR ontrad  FIMM: bR antrof

1
Dataln

Datain Diatain

B sguelchinjector N B  FMModulator N

- FMVoiceFilter
Dataln

FM Receiver Application

USRP DeviceContral

Datain_Ghi [] DateOut_ Chit

Datain_Ch1 []

USRP_Device & <<AssemblyController>>

FM_Receiver_AssemblyController

FMOemoduiatorfesource Control

ResamplerResource Gontral

FM\/oiceFiiterResource Control
SguelchFiterResonrceContral

SguelchDetectorResouree Contral

DataOut_ ChT

Dataln
L]

m  FMVoiceFilter SquelchDetector Resampler

FMDemodulator

Datz Out

DataOut

AM Transmitter Application

[agPort

<<AssemblyController>> =]

USRP_Device | M OatzCut Cho
Dataowt_cht

AM_Transmitter_AssembhyControllerss USRP_ DeviceCantral Dataln_Chi []

ontreld 4 M antro/

Datain CHO

Datain

AMModulator

AMVoiceFilter




Aggregate Application Concept

 An aggregate application (AA) is made of multiple
applications and/or components
— SCA application := (Resource | SCA application)*

— Allows the same level of reusability for applications than for
components

— By flattening the recursion, an AA ends-up being composed of
Resources only but the difference is:

« extra knowledge about which Resources are part of sub-assemblies is
provided

 Use of an application the same way than a regular
component enable a CF to:
— Coordinate the launch of applications that need to be connected
— Interconnect applications

« The SCA already use the concept of external ports to define ports for
an application




Implementation Options

 Option 1: support of AA through modeling tools only

— Means to define an AA model is proprietary and the AA is converted
into a single application before deployment

— A CF only handle application made of Resources only

« Aggregate knowledge is lost for error reporting and for the monitoring
tools

— Make it difficult to share AA across different modeling tools

 Option 2: support of AA through CF and modeling tools
— A standard meta-data model is provided to describe an AA

— Allow the concept to be supported at all levels: modeling,
deploying, monitoring, and debugging

— Requires changes to existing CFs but they are not significant and
they can be made optional to implementers that do not wish to
support AA




SCA Support for Aggregate

Applications

« Allow a SAD file to reference other applications
(SAD files)

{componentfiles>

{componentfile id="ComponentFile 1" type="'SPD">
{localfile name="Resource A.spd.xml"/>

{/componentfile’

{componentfile id="ComponentFile 2" type="'SAD">
{localfile name="Application_X.sad.xzml"/>
{/componentfile’

{componentfile id="ComponentFile 3" type=""'SAD">
{localfile name="Application_¥Y.sad.xzml"/>

{/componentfile’

{/componentfiles’

— CF will have to deal with references to applications instead
of only references to Resources




SCA Support for Aggregate

Applications

 Extend component instantiation to application
— Like for a resource component, this element can be used to
specify the information specific to an application instance
» the application instance’s name,
 the value of some application properties
« the name to register to the naming service name (optional)

<componentplacement:
<componentfileref refid="ComponentFile 2"/
{componentinstantiation id="DCE:38148af6-5744-4d2c-95e8-559085be34ban >
{usagename’>Sub Application XK<{/usagename>
{componentproperties?>
{simpleref refid="Property1” value=""a value" />
{/componentproperties?
<findcomponent>
<namingservice mame="Application &"/>
</Findcomponent>
</componentinstantiation>
</componentplacement?




SCA Support for Aggregate

Applications

— CF will use an ApplicationFactory specific for a sub-
application to create the instance of a sub-application

— CF will store the Application instance of a sub-application for
connection and shutdown purpose

 Connections to sub-applications can be
established through Application objects

— Component instantiation reference and naming service type
of connections can easily be supported the same way they
are for regular components

— Domain finder type of connection could be supported but it
would require a new type “application” in the SAD’s DTD




SCA Support for Aggregate

Applications

« Extend the Application interface to support sub-
applications

— A new read-only attribute containing the sequence of sub-
applications of the application is required for control an
monitoring purpose

— The attribute can be added to the interface or to a new
AggregateApplication interface that extends the Application
Interface

« Application installation service
— An application installer tool must be modified to support sub-

applications
!'.I ¥ - — The DomainManager installation service must be extended

X




Conclusion

Inter-application connections raise an issue about

How an application to be involved in a connection can be identified
and found

Application reusability

Aggregate Application concept enables application
reusability and inter-application connections

Extension to the current SCA specification

ggnnection in the SAD’s DTD but it is not required

No new XML required
Backward compatibility is kept for tools and CF
Changes to the SCA specification are mostly textual

CF Implementers to support aggregate applications must
perform to their implementation

A new type “application” could be added to the domainfinder type of

NIKE o




