The Software Communications Architecture

Claude Bélisle
Research Manager
Military Satellite Communications
Communication Research Centre
claude.belisle@crc.ca
SCA - A Paradigm shift

• Decouples hardware, software and system integration functions
 – Facilitates acquisition process by eliminating stovepipe systems

• Promotes re-use of signal processing software modules
 – Modulator, demodulator, encoder, interleaver, FFT…
 – Reduces application development cost

• Open framework architecture
 – “Glues” the software and hardware
 – Facilitates application and module portability
SCA Core Framework

- Central radio software piece, the “operating system”
- Provides an abstraction between software and hardware
 - Defines interfaces, behavioural specifications and general rules to support devices and application portability
- Based on commercial standards
 - X.731 ITU/CCITT OSI System State Management
 - CORBA
 - Posix (Portable Operating System Interfaces)
 - CCM (Corba Component Model)
- Designed to meet commercial as well as military application requirements
SCA Design Concept
SCA Core Framework

• The Core Framework consists of:
 – Base Application Interfaces
 – Framework Control Interfaces
 – Framework Service Interfaces
 – Domain Profile

• It specifies a life cycle for the signal processing modules to be downloaded on the hardware:
 – Load
 – Initialize
 – Connect
 – Configure
 – Execute
 – Terminate
 – Unload
 – Release
Building a Reference Implementation

• What is a Reference Implementation?
 – Open-source software
 – Defines the behavior of the specifications
 – Codifies all of its relevant technical aspects

• Benefits of RI
 – Reduces the level of ambiguity of the SCA specifications
 – Increases the potential for interoperability
 – Increases understanding of the architecture through an example
 – Reduces the cost and time-to-market of SDRs
CRC and SCA-RI

- Active member of SDR Forum
 - Participated in the development of the SRA
 - Involved in SCA technical discussions
 - Introduced the concept of Ports to enable true modularity of software components

- Developed a PoC Software Defined Radio
 - FM Line-of-Sight
 - SCAv0.3
 - In C++ on Digital Signal Processors (DSP)

- Realized the need for an Open Source Reference Implementation
 - Proposal to SDR Forum to promote commercial adoption
 - October 2001
SCARI (1)

• Implementation
 – SCA version 2.1
 – Mandatory features
 – Written in Java for portability and ease of comprehension
 – Includes a simple waveform example

• Partners
 – Implemented in collaboration with DRDC – Ottawa
 – Sponsored by the SDR Forum
SCARI (2)

- **Product**
 - 60,000 lines of code, 300 pages of documentation
 - Peer reviewed
 - Available at www.crc.ca/rmsc or www.crc.ca/scari
 - More than 7000 downloads from worldwide organizations
 - 37 000 hits since June 2002

- **By-product**
 - CRC submitted 21 technical change proposals to JTRS / JPO in reference to SCA version 2.2
Impact of SCARI

• **Opened the door to new players**
 – No longer limited to the majors
 – Decoupled Hardware / Software / Waveform development

• **Facilitated the emergence of new markets for SDR concepts**
 – Radar processing
 – Medical imagery
 – Other signal processing intensive applications

• **Transformed the waveform development approach**
 – Modularity at component level rather than applications
Waveform Development Vision

- **Current Approach**
 - Extension of conventional techniques
 - Single monolithic block defining the application
 - In this case, the waveform is the application

Taken from JTRS API Supplement
Waveform Development Vision

• Considering that software cost is:
 – 20% development
 – 80% maintenance

• Development approach strongly promoted by CRC
 – Reduce the granularity of the software components
 • Similar to specialized chip sets in board design
 • Simplifies debug and maintainability
 • Facilitates reuse of components between applications
Waveform Development Vision

- A waveform is composed of many applications
- Each application is composed of many signal processing modules (resources)
Application Example
Digital Audio Broadcast

- Physical Layer of the DAB receiver application containing 12 resources
CRC Waveform Application Builder

DAB Example

1024 pts FFT
D-QPSK decoding
Freq Deinterleave
QPSK Demapping
Block Decoder
Time Deinterleave
Viterbi Decoder
ICS-652 A/D-DDC Device
Mpeg Player Resource
Audio Device
Time & Freq Sync

A/D Converter Device → Time & Freq Sync → 1024 pts FFT → D-QPSK Decoding

Block Deinterleave → Block Decoder → Q-PSK Demapping → Freq Deinterleave

Time Deinterleave → Viterbi Decoder → MPEG player → Audio Device
Connecting Applications

• Connections between applications is however required
 – This is supported by the SCA but mechanism not flexible enough, requires hardcoding

• There is a need to transpose the resource connection mechanism to the application level
 – CRC will submit a change proposal to JTRS/JPO
 – Paper to SDRF conference to be published
Following the RI

- CRC continues to develop software to promote the expansion of the Software Define Radio
 - SDR Development Tools
 - Waveform Application Builder (WAB)
 - Radio Manager
 - Node Boot Builder
 - SCA Core Framework v2.2
 - Java
 - Hybrid
 - C++
CRC SCA Core Framework v2.2

• **Java**
 – Extension of SCARI
 – Low cost
 – Most valuable for training
 – JTEL certification would be important for public release

• **Hybrid**
 – Java for management functions, C++ for signal processing
 – Easy to maintain Domain Manager
 – Allows development of devices and resources in C++
 – Mid-range cost
 – Applicable to embedded platforms with single board computer running Java virtual machine
CRC SCA Core Framework v2.2

- **C++**
 - Full feature implementation of SCA CF v2.2
 - All C++ implementation
 - Applicable to embedded platforms
 - High cost
Thank You

claude.belisle@crc.ca