Standards for SDR; a Canadian Perspective

Steve Bernier
Advanced Radio Systems, Communication Research Centre Canada
December, 2007
Overview

- Overview of the Canadian market
- CRC’s Perspective on SDR
- The SCA and it’s ecosystem
- The SCA; What’s next?
- Conclusion
Content

• Overview of the Canadian market
• CRC’s Perspective on SDR
• The SCA and it’s ecosystem
• The SCA; What’s next?
• Conclusion
Canadian Market

• **Canada is 2nd largest country**
 – 219th for population density
 – Population: 33 million

• **Need for communications**
 – Canada was unified by the railway
 – Solidified by satellites
 – Telecommunications is crucial

• **Canadian internal market remains small**
 – USA population: 302 million
 – USA: 1,426,700 military personnel, 1,259,000 reserve
 – Canada: 62,000 military personnel, 22,000 reserve
Canadian Industry

- Canadian industry must create products that are applicable to commercial and military markets
 - Can’t rely on multi-billion projects like the US JTRS program

- Must use/create international standards and Commercial Off The Shelf (COTS) products
 - Can’t afford expensive one-of-a-kind systems
 - Provides access to international markets
 - Allows cost reduction through increased volume
CRC’s Perspective on SDR

• There are many standards for embedded systems hardware
 – PCI, PCI-X, cPCI, RapidIO, VME, PMC, XMC, PC/104, JTAG, USB, etc.
 – Provides a market to smaller players

• The complexity of embedded systems is on a constant rise
 – More software is used to address the complexity
 – In many cases, the cost of software is greater than the cost of hardware
 – The goal with SDR is to increase the amount of functionality implemented in software
 – Ironically, there is almost no standards in the embedded software industry
Content

• Overview of the Canadian market
• CRC’s Perspective on SDR
 • The SCA and its ecosystem
 • The SCA; What’s next?
• Conclusion
In 1999, Defence R&D Canada (DRDC) became interested in Software Defined Radios.

The CRC decided to evaluate the SCA standard:
- The US was about to launch the multi-billion Joint Tactical Radio Systems (JTRS) program.
- The architecture seemed generic enough to meet the requirements of our SDR prototype.

Developed a FM LoS SDR prototype using SCAv0.3:
- Used a dual TI DSP board from Spectrum Signal Processing.
- Resulted in several change proposals submitted to the Modular Software-programmable Radio Consortium (MSRC).
- The MSRC integrated the proposals into SCAv1.0.
CRC’s Perspective on SDR

- SCAv0.3 LoS FM SDR prototype (2000)
CRC’s Perspective on SDR

• Conclusions of the prototyping project
 – The SCA can be implemented
 – The SCA is in fact a Component-based Design architecture for embedded systems
 • Similar to Enterprise Java Beans and .Net
 – The SCA is not specific to SDR or to military applications
 – The SCA specification can be influenced
 • CRC has successfully influenced every release of the specification: from version 0.3 to version 2.2.2
 • Submitted over 25 official change proposals
 – The SCA is unique and at the forefront of embedded software development
CRC’s Perspective on SDR

• Since the SCA specification is publicly available, the Canadian industry can play a role in the SDR market

• The SCA has been demonstrated to work on very large and very small platforms:
 – Universal Software Radio Peripheral (USRP): Gnu Radio RF front end
 – Gumstix: Tiny single board computer
 – Thales JTRS Enhance MBITR (JEM): Handheld military radio
 – Harris Falcon III: Handheld military radio
 – Ultra Electronics TCS HCLOS™: Backbone networking radio
CRC’s Perspective on SDR

- Universal Software Radio Peripheral (USRP): Gnu Radio RF front end
 - Commercial RF Device with 4 channels
 - CRC developed an SCA AM/FM radio with USRP
CRC’s Perspective on SDR

- **Gumstix**:
 - CRC used a Gumstix™ Audio Pack to implement an SCA FM radio (XScale processor)
 - Audio Pack: 1.5 cm high, 3cm wide, 10cm long.
CRC’s Perspective on SDR

- **Thales JTRS Enhance MBITR (JEM):**
 - AN/PRC-148 SCA handheld military radio
 - Retrofitted with a DSP (TBC)
CRC’s Perspective on SDR

- **Harris Falcon III:**
 - AN/PRC-152 SCA handheld military radio
 - SCA certified without waivers
CRC’s Perspective on SDR

- Ultra Electronics TCS HCLOS™: Networking radio
 - AN/GRC-245 HCLOS™ military radio
Content

• Overview of the Canadian market
• CRC’s Perspective on SDR
 • The SCA and it’s ecosystem
 • The SCA; What’s next?
• Conclusion
The SCA

• The SCA helps standardize some aspects of the software:
 – How the software can be configured, started, stopped
 – How software gets installed and launched

• The SCA makes application software more portable
 – The use of Portable Operating System Interfaces (POSIX)
 – The use of CORBA as a middleware
The SCA Ecosystem

- The SCA has fostered an ecosystem of COTS products and services for radio manufacturers
 - SCA Core Frameworks
 - Application deployment and configuration
 - Basic Device functionality
 - Code generation tools
 - Translate models into source code: Model Driven Development
 - Runtime monitoring tools
 - Install, launch, and debug applications
 - View log messages and events
 - Waveform application software
 - Implementation of standards: TETRA, APCO-P25, 3G, etc.
The SCA Ecosystem

• Canadian providers of COTS SCA solutions for radio manufacturers:
 – The Communications Research Centre Canada:
 • COTS SCA Software Suite
 – Spectrum Signal Processing by Vecima
 • First COTS SCA platform
 – ISR Technologies:
 • First COTS platform with FPGA partial reconfiguration
 – Lyrtech Signal Processing:
 • First COTS platform with CORBA on FPGA and DSP
 – Zeligsoft:
 • Provides COTS modeling tools

• Canadian Radio Manufacturer - Ultra Electronics TCS:
 – Deployed the first military SCA radio that relies on a COTS SCA Core Framework (US Army, WIN-T)
The SCA Ecosystem

- Other providers of COTS SCA solutions for radio manufacturers:
 - United States:
 - Pentek – COTS SCA boards
 - PrismTech – COTS SCA Software Suite
 - Harris – COTS SCA Core Framework
 - Australia:
 - Etherstack – Waveform applications (ex: TETRA, APCO-P25)
The SCA Ecosystem

• The existence of an ecosystem of COTS SCA products and services has been instrumental
 – Organizations feel more confident to make the jump towards the SCA since it is a standard
 – The cost of entering the SCA market is greatly reduced
 – Previous achievements provide risk mitigation

• Outside the US, CRC is involved with more than 35 organizations using the SCA
 – Canada, UK, Germany, Italy, Israel, India, Singapore, Korea, China
The SCA Ecosystem

• COTS SCA products and services are speeding up the development process
 – Clarity/precision: Development starts at a higher level of abstraction
 – Reuse: High-level abstractions are translated into platform specific artifacts
 – Early visibility: Can quickly create prototypes
 – Greater flexibility: Developers can redesign almost at will
 – Fewer defects: Because of modeling wizards and model translation which greatly reduce manual coding
 – Reduced development cost: Shorter development cycles, time is money!
Content

• Overview of the Canadian market
• CRC’s Perspective on SDR
• The SCA and it’s ecosystem
 • The SCA; What’s next?
• Conclusion
The SCA community has not been successful at standardizing domain-specific APIs.
The SCA: What’s Next?

- The SCA needs standard domain-specific APIs
The SCA: What’s Next?

• Domain-specific APIs would provide a greater level of portability
 – Porting an application to a similar platform which uses different Radio hardware would not require API changes

• The SCA working group of the SDR Forum is looking for organizations to participate in an effort to assemble a set of SDR-specific APIs
 – Will look at several APIs:
 • JTRS newly released APIs
 • Will also look at the OMG Software-Based Communications models for communications equipment
 • Will look the SDRF Smart Antenna APIs
 • Will look at Transceiver APIs from Thales
 – Welcomes more contributions
Content

• Overview of the Canadian market
• CRC’s Perspective on SDR
• The SCA and it’s ecosystem
• The SCA; What’s next?

• Conclusion
Conclusion

• Standards are essential to foster a healthy ecosystem around a technology
 – Lower cost of entry
 – Risk mitigation

• The SCA is only a start; it is an architecture supplemented with guideline for software development best practices
 – The SCA is not a military technology
 – The SCA is a Component-based Design architecture for embedded systems

• The SCA works for small and large military and commercial applications
Conclusion

• The next big step for the SCA community is the development of standard APIs for radio hardware
 – The SCA Working group of the SDR forum will welcome any contribution
Questions ?

POC: steve.bernier@crc.ca
Web site: www.crc.ca/scari